Interlace Polynomials: Enumeration, Unimodality, and Connections to Codes
نویسندگان
چکیده
The interlace polynomial q was introduced by Arratia, Bollobás, and Sorkin. It encodes many properties of the orbit of a graph under edge local complementation (ELC). The interlace polynomial Q, introduced by Aigner and van der Holst, similarly contains information about the orbit of a graph under local complementation (LC). We have previously classified LC and ELC orbits, and now give an enumeration of the corresponding interlace polynomials of all graphs of order up to 12. An enumeration of all circle graphs of order up to 12 is also given. We show that there exist graphs of all orders greater than 9 with interlace polynomials q whose coefficient sequences are non-unimodal, thereby disproving a conjecture by Arratia et al. We have verified that for graphs of order up to 12, all polynomials Q have unimodal coefficients. It has been shown that LC and ELC orbits of graphs correspond to equivalence classes of certain error-correcting codes and quantum states. We show that the properties of these codes and quantum states are related to properties of the associated interlace polynomials.
منابع مشابه
Enumeration and Special Functions
1.1 q -binomial coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 1.2 Unimodality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 1.3 Congruences for the partition function . . . . . . . . . . . . . . . . . . . . . . . . . 143 1.4 The Jacobi triple product identity . . . . . . . . . . . . . . . . . ...
متن کاملInversion polynomials for 321-avoiding permutations: addendum
This addendum contains results about the inversion number and major index polynomials for permutations avoiding 321 which did not fit well into the original paper. In particular, we consider symmetry, unimodality, behavior modulo 2, and signed enumeration.
متن کاملWeighted Interlace Polynomials
The interlace polynomials extend in a natural way to invariants of graphs with vertex-weights, and these weighted interlace polynomials have several novel properties. One novel property is a version of the fundamental three-term formula q(G) = q(G − a) + q(G − b) + ((x − 1) − 1)q(G − a − b) that lacks the last term; consequently the use of vertex-weights allows for interlace polynomial calculat...
متن کاملOne and Two-Variable Interlace Polynomials: A Spectral Interpretation
We relate the oneand two-variable interlace polynomials of a graph to the spectra of a quadratic boolean function with respect to a strategic subset of local unitary transforms. By so doing we establish links between graph theory, cryptography, coding theory, and quantum entanglement. We establish the form of the interlace polynomial for certain functions, provide new one and two-variable inter...
متن کاملFrom Poset Topology to q-Eulerian Polynomials to Stanley’s Chromatic Symmetric Functions
In recent years we have worked on a project involving poset topology, various analogues of Eulerian polynomials, and a refinement of Richard Stanley’s chromatic symmetric function. Here we discuss how Stanley’s ideas and results have influenced and inspired our own work. 1. A walk in the woods It is a privilege and an honor to contribute an article to a volume celebrating Richard Stanley’s 70th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 158 شماره
صفحات -
تاریخ انتشار 2010